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a b s t r a c t

This study introduces a quantum-inspired spiking neural network (QiSNN) as an integrated connectionist
system, in which the features and parameters of an evolving spiking neural network are

∧
optimized

together with the use of a quantum-inspired evolutionary algorithm. We propose here a novel

∧
optimization method that uses different representations to explore the two search spaces: A binary
representation for

∧
optimizing feature subsets and a continuous representation for evolving appropriate

real-valued configurations of the spiking network. The properties and characteristics of the improved
framework are studied on twodifferent synthetic benchmark datasets. Results are compared to traditional
methods, namely a multi-layer-perceptron and a naïve Bayesian classifier (NBC). A previously used real
world ecological dataset on invasive species establishment prediction is revisited and new results are
obtained and

∧
analyzed by an ecological expert. The proposedmethod results in amuch faster convergence

to an optimal solution (or a close to it), in a better accuracy, and in a more informative set of features
selected.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction1

Recently spiking neural networks (SNN) (Gerstner & Kistler,2

2002; Izhikevich, 2003) have been developed as biologically plau-3

sible connectionist models, which use trains of spikes for in-4

ternal information representation. It was argued that SNN have5

at least similar computational power than the traditional Multi-6

Layer-Perceptronderivates (Maass, 1999). Nowadaysmany studies7

attempt to use Spiking Neural Networks (SNN) for practical ap-8

plications, some of them demonstrating very promising results9

on solving complex real world problems. Substantial progress10

has been made in areas like speech recognition (Verstraeten,11

Schrauwen, & Stroobandt, 2005), learning rules (Bohte, Kok, &12

Poutré, 2002), associative memory (Knoblauch, 2005), and func-13

tion approximation (Iannella & Kindermann, 2005), just to name14

a few. Based on Kasabov (2007) an evolving spiking neural net-15

work was proposed and applied to audio-visual pattern recogni-16

tion (Wysoski, Benuskova, & Kasabov, 2006, 2008). A similar type17

of network was later used in the context of a taste recognition18

task (Soltic, Wysoski, & Kasabov, 2008).19
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With encouraging results, spiking neural networks were
∧
pre- 20

sented in the context of a feature selection problem (Schliebs, 21

Defoin-Platel, & Kasabov, 2009). In this work a binary state- 22

of-art
∧
optimization algorithm, namely the Versatile Quantum- 23

inspired Evolutionary Algorithm (vQEA) (Defoin-Platel, Schliebs, & 24

Kasabov, 2007), was combined with an Evolving Spiking Neural 25

Networks(eSNN) (Wysoski et al., 2006). Through implementing 26

quantum principles, vQEA evolves in parallel a number of 27

independent probability vectors, that may interact at certain 28

intervals with each other, forming a multi-model Estimation of 29

Distribution Algorithm (EDA) (Defoin-Platel, Schliebs, & Kasabov, 30

in press). 31

Following the wrapper approach, vQEA was used to identify 32

relevant feature subsets and simultaneously evolve an optimal 33

eSNN parameter setting. This extended architecture was referred 34

to as the Quantum-inspired SNN (QiSNN) framework. Applied 35

to carefully designed benchmark data, containing irrelevant and 36

redundant features of varying information quality, the QiSNN- 37

based feature selection led to excellent classification results and 38

an accurate detection of relevant information in the dataset. 39

The QiSNN framework was used on a case study of ecological 40

modeling (Schliebs, Defoin-Platel, Worner, & Kasabov, in press). 41

Meteorological data, such as monthly and seasonal temperature, 42

rain fall and soil moisture recordings for different geographical 43

sites, were compiled from published results, and each global 44

site was
∧
labeled according to the presence or absence of the 45

0893-6080/$ – see front matter© 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2009.06.038

Please cite this article in press as: Schliebs, S., et al. Integrated feature and parameter optimization for an evolving spiking neural network: Exploring heterogeneous
probabilistic models. Neural Networks (2009), doi:10.1016/j.neunet.2009.06.038

http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
mailto:sschlieb@aut.ac.nz
mailto:sschliebs@gmail.com
mailto:michael.defoinplatel@gmail.com
mailto:worner@lincoln.ac.nz
mailto:nkasabov@aut.ac.nz
http://dx.doi.org/10.1016/j.neunet.2009.06.038


UN
CO

RR
EC

TE
D
PR

OO
F

NN: 2585

ARTICLE  IN  PRESS
2 S. Schliebs et al. / Neural Networks xx (xxxx) xxx–xxx

Mediterranean fruit-fly (a serious fruit pest). The study aimed1

towards the identification of important features relevant for2

predicting the presence/absence of this insect species. Results have3

been compared to the classical Naïve Bayesian Classifier (NBC) and4

obtained feature subsets were verified by an ecological expert.5

In this study we want to extend the work presented in Schliebs6

et al. (in press) by studying the QiSNN framework on two7

benchmark and one real world problem. We will start our analysis8

by introducing a novel combined
∧
optimization algorithm, which9

allows us to explore heterogeneous search spaces simultaneously:10

The method uses a binary representation for
∧
optimizing feature11

subsets and a continuous representation for evolving appropriate12

real-valued configurations of a spiking network. Altogether four13

methods are here experimentally compared to each other:14

QiSNN as presented in Schliebs et al. (in press), the enhanced15

QiSNN using the combined
∧
optimization algorithm, a multi-layer16

perceptron and a classical NBC. A comprehensive analysis of the17

results obtained from the benchmarks experiments in terms of18

consistency of selected feature subsets, classification accuracy,19

computational complexity and evolution of parameters in the20

QiSNN framework is presented. Furthermore, we will point out21

some significant differences between QiSNN and its enhanced22

version. Finally we revisit the ecological dataset used in Schliebs23

et al. (in press) and new results are obtained and
∧
analyzed by an24

ecological expert.25

In the following sections first the QiSNN framework is sum-26

marized. The novel continuous
∧
optimization method is introduced27

and the simultaneous exploration of a binary and a continuous28

search space is discussed. QiSNN is then experimentally studied,29

followed by an analysis and discussion of the obtained results.30

2. Framework and implementation of QiSNN31

Based on our previous results on eSNN and quantum inspired32

evolutionary algorithms (Benuskova & Kasabov, 2007; Defoin-33

Platel et al., in press; Kasabov, 2007; Wysoski et al., 2008), here34

we propose and explore an integrative quantum inspired feature35

selection using the eSNN architecture, tightly coupled with the36

learning environment (the data).37

2.1. The eSNN architecture38

The eSNN architecture uses a computationally very simple and39

efficient spiking neural model, in which early spikes, received by40

a neuron, are
∧
more strongly weighted than later ones. The model41

was inspired by the neural processing of the human eye, which42

performs a very fast image processing. Experiments have shown43

that a primate only needs several hundreds of milliseconds to44

make reliable decisions about images that were presented in a test45

scenario (VanRullen & Thorpe, 2001). Since it is known that neural46

image recognition involves several succeeding layers of neurons,47

these experiments suggested that only very few spikes could48

be involved in the neural chain of image processing. In Thorpe49

(1997) a mathematical definition of these neurons was proposed50

and tested on some face recognition tasks, reporting encouraging51

experimental results. The samemodel was later extended to eSNN52

and used in Wysoski et al. (2006) and Wysoski (2008) to perform53

audio-visual face recognition.54

Similar to other SNN approaches, a specific neural model, a55

learning method, a network architecture and an encoding from56

real values into spike trains need to be defined in an eSNN model.57

The neural model is given by the dynamics of the post-synaptic58

potential ui(t) of a neuron i:59

ui(t) =

0 if fired∑
j|f (j)<t

wji m
order(j)
i else (1)60

Fig. 1. Evolution of the post-synaptic potential (PSP) of a neural model used in
QiSNN for a given input stimulus. If the potential reaches threshold θ a spike is
triggered and the PSP set to 0 for the rest of the simulation, even if the neuron is
still stimulated by incoming spike trains.

Algorithm 1 Training an Evolving Spiking Neural Network
Require: ml ∈ (0, 1), sl ∈ (0, 1), cl ∈ (0, 1), l ∈ L
1: initialize neuron repository Rl = {}
2: for all samples X (i) belonging to class l do
3: w

(i)
j ← (ml)order(j),
∀ j | j pre-synaptic neuron of i

4: u(i)max ←
∑
jw

(i)
j (ml)

order(j)

5: θ (i) ← clu
(i)
max

6: if min(d(w(i), w(n))) > sl, w(n) ∈ Rl then
7: w(n) ← mergew(i)andw(n)
8: θ (n) ← merge θ (i)and θ (n)
9: else
10: Rl ← Rl ∪ {w(i)}
11: end if
12: end for

where wji is the weight of a pre-synaptic neuron j, f (j) the firing 61

time of j, and mi ∈ (0, 1) a parameter of the model, namely 62

the modulation factor. Function order(j) represents the rank of 63

the spike emitted by neuron j. For example, a rank order(j) = 0 64

would be assigned, if neuron j is the first among all pre-synaptic 65

neurons that emits a spike. In a similar fashion the spikes of all pre- 66

synaptic neurons are ranked and then used in the computation of 67

ui. A neuron i fires a spike when its potential has reached a certain 68

threshold θ . After emitting a spike, the potential is reset to ui = 0. 69

Each neuron is allowed to emit only a single spike at most. The 70

threshold θ = c umax is set to a fraction c ∈ (0, 1) of themaximum 71

potential umax possible by a neuron. In Fig. 1 the change of the post- 72

synaptic potential for this neuralmodel is presented, when a series 73

of input spikes (stimuli) are presented to the different synapses of 74

this neuron. 75

An evolving neural network architecture using the above 76

model along with a learning algorithm was proposed in Wysoski 77

et al. (2006, 2008). The method successively creates a repository 78

of trained output neurons during the presentation of training 79

samples. For each training sample a new neuron is trained and 80

then compared to the ones already stored in the repository. If 81

a trained neuron is considered to be too similar (in terms of 82

its weight vector) to the ones in the repository (according to a 83

specified similarity threshold s), the neuron will be merged with 84

themost similar one. Otherwise, the trained neuron is added to the 85

repository as a new output neuron. Themerging is implemented as 86

the (running) average of the connectionweights, and the (running) 87

average of the two firing threshold. Because of the incremental 88

evolution of output neurons it is possible to accumulate knowledge 89

as it becomes available. Hence a trained network is able to learn 90

new data without the need of re-training already learned samples. 91

The procedure is described in detail in Algorithm 1. 92

∧
The encoding of input values seems to be a critical factor in 93

all SNN approaches. Several encoding mechanisms for SNN have 94

been proposed, such as frequency mappings, Poisson processes 95

Please cite this article in press as: Schliebs, S., et al. Integrated feature and parameter optimization for an evolving spiking neural network: Exploring heterogeneous
probabilistic models. Neural Networks (2009), doi:10.1016/j.neunet.2009.06.038
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and rank order encoding. Another approach is the population1

encoding which distributes a single input value to multiple2

neurons and hence may cause the excitation and firing of several3

responding neurons. Our implementation is based on arrays of4

receptive fields as described in Bohte et al. (2002). Receptive fields5

allow the encoding of continuous values by using a collection of6

neurons with overlapping sensitivity profiles. Each input variable7

is encoded independently by a group of M one dimensional8

receptive fields. For a variable n an interval [Inmin, I
n
max] is defined.9

The Gaussian receptive field of neuron i is given by its center10

µi = Inmin + (2i − 3)/2 ∗ (Inmax − I
n
min)/(M − 2) and width11

σ = 1/β(Inmax − I
n
min)/(M − 2), with 1 ≤ β ≤ 2. Parameter β12

directly controls the width of each Gaussian receptive field.13

2.2. Wrapper approach14

The eSNNmay be used to address feature subset selection (FSS)15

problems following the well known wrapper approach. A wrapper16

contains a general
∧
optimization algorithm interacting with an17

induction method (classifier), also cf. Fig. 2. The
∧
optimization18

task consists in a proper identification of an optimal feature19

subset, which maximizes the classification accuracy determined20

by the inductor. An eSNN operates here as the induction method,21

while, due to its interesting properties in terms of solution22

quality and convergence speed, the previously proposed Versatile23

Quantum-inspired Evolutionary Algorithm (vQEA) (Defoin-Platel24

et al., 2007) was used as the
∧
optimization algorithm. A vQEA25

evolves in parallel a number of independent probability vectors,26

which interact at certain intervals with each other, forming a27

multi-model Estimation of Distribution Algorithm (EDA) (Defoin-28

Platel et al., in press). The binary nature of vQEA fits well to the29

feature selection problem we want to apply it on.30

2.3. Integrated feature and parameter optimization31

Manual fine-tuning the neuronal parameters can quickly
∧
be-32

come a challenging task (Wysoski, 2008). An alternative proposed33

in Valko, Marques, and Castelani (2005), is to optimize both the set34

of features and the neuronal parameters, in a simultaneous way.35

The selection of the fitness function was identified to be a crucial36

step for the successful application of such an embedded approach.37

In the early phase of the
∧
optimization the parameters are selected38

randomly. As a result it is very likely that a setting is selected for39

which the classifier is unable to respond to any input presented,40

which corresponds to flat areas in the fitness landscape. Hence41

a configuration that will allow the network to fire (even if not42

correctly) represents a huge (local) attractor in the search space,43

which could be difficult to escape in later iterations of the search.44

In Valko et al. (2005) a linear combination of several sub-criteria45

was used to avoid a too rugged fitness landscape. Nevertheless46

we can not confirm
∧
that the use of much simpler fitness functions47

led to any problems in our experiments. Using the classification48

accuracy on testing samples seemed to workwell as it is presented49

in this and previous papers. All parameters, namely modulation50

factor ml, similarity threshold sl, potential fraction cl, ∀l ∈ L51

of eSNN were included in the search space of the
∧
optimization52

method.53

Due to its binary nature, vQEA required the conversion of54

bit strings into real values. It was experimentally shown that a55

small number of Gray-coded bits seemed sufficient to approxi-56

mate meaningful parameter configurations of the eSNN method.57

Nevertheless the use of a binary
∧
optimizer for a real-valued search58

space appears unsatisfactory. Each real-valued parameter needs to59

be encoded by a number of bits. For the mapping of bit strings60

into a real value additional computational resources are necessary.61

Furthermore a granularity is introduced into the search interval.62

Fig. 2. The QiSNN framework of tightly coupled feature selection and parameter

∧
optimization of eSNN, integrated with the data.

Since a single continuous variable is represented by many bits, a
∧

63

binary optimization method has to operate on more variables, 64

compared to a continuous optimizer. Thus scaling problems can 65

be expected for binary
∧
optimization, especially in the context of 66

high-dimensional problems, that need a precise
∧
optimization of 67

real-valued search variables. Furthermore neighboring solutions in 68

the continuous domainmight not be neighbors in their binary rep- 69

resentation. Exploring the local neighborhood of a solutionmay re- 70

quire the
∧
optimizer to flip many bits at the same time, which will 71

encourage premature convergence and promote the phenomenon 72

of hitch-hiking. Hence we will extend vQEA in this study towards 73

continuous search spaces and use a combined representation for 74

the simultaneous exploration of a binary landscape and the con- 75

tinuous landscape. 76

The complete QiSNN framework used in this study is summa- 77

rized in Fig. 2. 78

3. Extending vQEA for continuous optimization 79

Based on the vQEA (Defoin-Platel et al., 2007), we propose here 80

an extension of the algorithm to allow exploration of continuous 81

search spaces. vQEA has been developed as a binary
∧
optimization 82

method, which employs some quantum computing principles 83

to enhance classical evolutionary algorithms. The method was 84

deeply studied in Defoin-Platel et al. (in press) and it was shown 85

that vQEA belongs to the class of Estimation of Distribution 86

Algorithms (EDA). The study revealed that the core of vQEA 87

maintains a multiple probabilistic model, which is quite in contrast 88

to other typical EDA, like e.g. Probabilistic Incremental Learning 89

(PBIL), Univariate Marginal Distribution Algorithm (UMDA), and 90

compact Genetic Algorithm (cGA), see Lozano, Larra naga, Inza, 91

and Bengoetxea (2006) for an excellent overview for these 92

algorithms. In these methods only a single probabilistic model 93

is evolved during the
∧
optimization process. In vQEA each model 94

explores the search space independently, but it may exchange 95

information at pre-defined intervals with the other models. The 96

algorithm is population based and each individualmanages its own 97

probabilistic model. The individuals itself are organized in groups, 98

hence introducing an important structure into the population. 99

Several advantages of this multi-model and the structured 100

population have been identified. vQEA uses an implicit adaptive 101

learning rate, whichmakes it robust to its parameter configuration. 102

It was shown that a certain parameter setting is suitable for a 103

variety of problem classes and sizes. Furthermore, themulti-model 104

approach allows a finite number of decision errors, which makes 105

vQEA robust against fitness noise. It was demonstrated that vQEA 106

performs better in terms of speed and solution quality than other 107

first-level EDA, especially when links are introduced between 108

Please cite this article in press as: Schliebs, S., et al. Integrated feature and parameter optimization for an evolving spiking neural network: Exploring heterogeneous
probabilistic models. Neural Networks (2009), doi:10.1016/j.neunet.2009.06.038
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variables (epistasis). The method was compared to a number of1

EvolutionaryAlgorithms on several different benchmark problems.2

Finally, using several probabilistic models allows a more diverse3

exploration of the search space than just using a single one.4

In the following we want to extent the binary multi-model5

EDA (i.e. vQEA) towards the area of continuous search spaces.6

Since all key characteristics of vQEA will be still present in7

the proposed algorithm, we expect similar advantages of this8

method in comparison to other evolutionary methods, such as9

Genetic Algorithm (GA), Particle Swarm
∧
Optimization (PSO) and10

Differential Evolution (D/E).11

3.1. Continuous-value multi-model EDA12

The probabilistic model in vQEA is based on a Bernoulli random13

variable for each bit, which is referred to as a qbit according14

to the used quantum computing metaphor. Sampling from such15

a string of qbits results in the creation of a bit string, which16

in turn can be evaluated by the corresponding fitness function.17

Since we want to consider continuous search spaces now, we18

have to replace the Bernoulli distribution by a continuous one,19

such that it becomes possible to sample real values instead20

of discrete ones. A number of approaches concerning how to21

employ such distributions and how to model them have been22

studied in literature. Generally they are based on Gaussian23

distributions (Bosman & Thierens, 2000; Gallagher & Frean, 2005;24

Gallagher, Frean, & Downs, 1999; Mininno, Cupertino, & Naso,25

2008; Yuan & Gallagher, 2003), histograms (Yuan & Gallagher,26

2003), or interval representations (Servet, Travé-Massuyès, &27

Stern, 1998).28

We consider a continuous EDA based on Gaussian distributions29

here. For each dimension j of the continuous search space and for30

each probabilistic model i, a random variable following a Gaussian31

distribution is evolved. Therefore the distribution is fully described32

by two parameters: The meanµ(j)i and the standard deviation σ
(j)
i .33

In each generation samples are drawn forming real-valued vectors,34

whose quality can be evaluated by the fitness measure. An update35

rule is then applied to update µ(j)i and σ
(j)
i to move the search36

towards promising areas in the search space,making higher quality37

solutionsmore likely to be sampled in the next generation.Wewill38

first describe the basic structure of algorithm in detail, followed by39

the presentation of the chosen update rule.40

The overall structure of the proposed extension is almost identi-41

cal to vQEA. Like vQEA also the continuous version is a population-42

based search method. Its behavior can be decomposed in three43

different interacting levels: Individual, group and population level.44

Individuals. The lowest level corresponds to individuals. An45

individual i at generation t contains a probabilistic model Pi(t)46

and two real-valued strings Ci(t) and Ai(t). More precisely Pi47

corresponds to a string of N pairs of values (µ(j)i , σ
(j)
i ):48

Pi = P1i . . . P
N
i =

[
µ
(1)
i . . . µ

(N)
i

σ
(1)
i . . . σ

(N)
i

]
. (2)49

The pair (µ(j)i , σ
(j)
i ) corresponds to the parameters of the50

distribution of the jth variable of the ith probabilistic model. Each51

variable in Pi is sampled according to µ
(j)
i and σ

(j)
i , so that Ci52

represents a configuration in the search space whose quality can53

be determined using a fitness function f . In most continuous54

optimization problems, the variables have a specific domain of55

definition. Without loss of generality we assume each c(j)i ∈56

Ci to be defined in to the interval [−1, 1]. As a consequence,57

each c(j)i ∈ Ci follows a truncated normal distribution in theQ158

range [−1, 1]. Truncated normals can be sampled using a simple59

numerical procedure and the technique is widely adopted in 60

pseudo-random number generation, see e.g. Geweke (1991) for an 61

efficient implementation. 62

To each individual i a solution Ai is attached acting as an 63

attractor for Pi. Every generation Ci and Ai are compared in terms 64

of their fitness. If Ai is better than Ci (i.e. f (Ai) > f (Ci) assuming 65

a maximization problem), an update operation is applied on the 66

corresponding model Pi. The update will move the mean values 67

of the probabilistic model Pi slightly towards the attractor Ai. The 68

choice of a suitable model update operation is critical for the 69

working of the algorithm. We will elaborate the details of the 70

model update in Section 3.1.1. 71

The update policy of an attractor Ai can follow two distinctive 72

strategies. In the original QEA (Han & Kim, 2002) an elitist update 73

strategy was used, in which the attractor Ai is replaced by Ci 74

only if Ci is better than Ai in terms of fitness. In a non-elitist 75

update strategy (firstly introduced in Defoin-Platel et al. (2007)) 76

Ci replaces Ai at every generation. The choice of the update policy 77

has great consequences for the algorithm and changes its behavior 78

completely. To emphasize the importance of the update rule the 79

non-elitist version of QEA has been proposed as Versatile QEA 80

(vQEA) as the attractors are able to change every generation and 81

therefore demonstrate a very high volatility. Since no experimental 82

condition could be identified that favored the elitist attractor 83

update policy,wewill concentrate on thenon-elitist versionduring 84

the course of this paper. 85

Groups. The second level corresponds to groups. The population 86

is divided into g groups each containing k individuals having the 87

ability of synchronizing their attractors. For that purpose, the best 88

attractor (in terms of fitness) of a group, noted Bgroup, is stored 89

at every generation and is periodically distributed to the group 90

attractors. A parameter Slocal is introduced, which controls the 91

phase of local synchronization, i.e. a local synchronization event 92

is triggered in every Slocal-th generation. 93

Population. The set of all p = g × k individuals forms the 94

population and defines the topmost level of the multi-model 95

approach. As for the groups, the individuals of the population 96

can synchronize their attractors, too. For that purpose, the best 97

attractor (in terms of fitness) among all groups, noted Bglobal, is 98

stored every generation and is periodically distributed to the group 99

attractors. A parameter Sglobal is introduced, which controls the 100

phase of global synchronization, i.e. a global synchronization event 101

is triggered in every Sglobal-th generation. 102

3.1.1. Model update 103

The update of the probabilistic model
∧
particularly interesting, 104

since it governs how the search space is explored by the algorithm. 105

Several continuous EDA have been proposed in literature (Bosman 106

& Thierens, 2000; Mininno et al., 2008; Mühlenbein, Mahnig, & 107

Rodriguez, 1999; Sebag & Ducoulombier, 1998; Yuan & Gallagher, 108

2003), alongwith a number of different update rules, e.g.Gallagher 109

and Frean (2005) and Yuan and Gallagher (2003). The common 110

principle of all these continuous EDA is based on the sampling of 111

a population. In vQEA (and thus also its extension) the situation 112

is very different, since only a single solution (for each probabilistic 113

model) is sampled in every iteration. Hence the model update can 114

not rely on the density of a population, but has to use a single 115

attractor instead to perform the desired update. 116

We formulate here an appropriate update rule for the 117

probabilistic models. Updating the mean µ(j) in the Gaussian 118

variable j appears to be straight-forward. We adopt a mean shift 119

towards the value of the current attractor a(j) at location j, which 120

is quite similar to the mean update used in methods mentioned 121

Please cite this article in press as: Schliebs, S., et al. Integrated feature and parameter optimization for an evolving spiking neural network: Exploring heterogeneous
probabilistic models. Neural Networks (2009), doi:10.1016/j.neunet.2009.06.038
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(a) Update operation for distant attractors. (b) Update operation for close attractors.

Fig. 3. The figure presents the update operation for a single Gaussian random variable. For each update the distance d = a(t)−µ(t) between the attractor a(t) and themean
µ(t) of the Gaussian is computed at generation t . (a) If d ≥ σ(t) the attractor is considered distant. We interpret that situation by assuming that µ(t) does not represent a
promising area in the search space. In this case the mean µ(t) is strongly shifted towards the attractor, while at the same time the standard deviation σ(t) is increased to
allow a wider search in the fitness landscape. (b) On the other hand, if the attractor is inside the boundaries defined by σ(t), i.e. d < σ(t), we assumed that µ(t) is already
in a promising area of the search space. The algorithm starts to localize the search by shiftingµ(t) only slightly towards the direction of the attractor, while decreasing σ(t)
at the same time.

above. Depending on the distance d = a(j) − µ(j) a shift ∆µ(j) is1

computed at generation t:2

∆µ(j)(t) =
2

1+ e−5d
− 1 (3)3

which is then used to perform the update:4

µ(j)(t + 1) = µ(j)(t)+ θµ∆µ(j)(t). (4)5

In Eq. (4) a parameter θµ is introduced, which we will refer to as6

the learning rate of the mean. We note that θµ corresponds to the7

maximummean shift in a single generation.8

For the update of the standard deviation σ (j) we will exploit9

the idea that σ (j) should decrease whenever µ(j) represents a10

‘‘promising’’ area in the fitness landscape. We assume µ(j) to be11

‘‘fit’’ when |d| < σ (j). Thus, if the attractor a(j) is close to µ(j)12

(within the boundaries defined by σ (j)), the standard deviation σ (j)13

is decreased. It is noteworthy that solutions fulfilling this condition14

are more likely to be sampled, than other solutions, which means15

that on average σ (j) will decrease. Attractors that are more distant16

to µ(j) and thus |d| ≥ σ (j), will cause an increase of σ (j), since17

it can be assumed that µ(j) does not represent a promising area18

in the landscape. We define the standard deviation shift ∆σ (j) at19

generation t as:20

∆σ (j)(t) =
1

1+ e−10(σ (j)(t)−0.5)
(5)21

and then use it to perform the update:22

σ (j)(t + 1) =
{
σ (j)(t)− θσ∆σ (j)(t) if |d| < σ (j)

σ (j)(t)+ θσ∆σ (j)(t) otherwise.
(6)23

In Eq. (6) a parameter θσ is used, which we will refer to as the24

learning rate of the standard deviation. Again wewant to note that25

θσ corresponds to themaximumstandard deviation shift in a single26

generation. In order to avoid divergent behavior of the algorithm,27

i.e. σ (j) increases indefinitely, we restrict the domain of σ (j) by28

defining upper and lower bounds, such that σmin ≤ σ (j) ≤ σmax.29

In Fig. 3 the principle of the update rule is summarized. Distant30

attractors (relative to the current mean of the PDF) result in a31

large mean shift, while at the same time the standard deviation32

is increased, cf. Fig. 3(a). For close attractors the mean shift is small33

and the standard deviation is decreased, cf. Fig. 3(b).34

It is important to note, that the probabilistic update operator35

described above, is similar to the rotation gate used in QEA. As36

shown in Defoin-Platel et al. (in press) the size of an update37

step using the rotation gate depends on the convergence of the38

probabilistic model. This phenomenon was described as a form39

of deceleration of the algorithm before convergence. The sigmoid40

shape of the standard deviation update adopts a similar strategy,41

since also here the size of the shift∆σ (j) decreases with increasing42

convergence of the algorithm.43

3.2. Combined search spaces 44

Many real-world problems require the exploration of combined 45

search spaces: a binary and a continuous space. An example is 46

the parallel evolution of the topology and the weight matrix of 47

a neural network. Here the topology is encoded as a bit string, 48

where ‘‘1’’ represents a present connection between two neurons 49

and ‘‘0’’ encodes its absence. Another example is thewrapper based 50

feature selection, where the presence/absence of a feature requires 51

a binary search space, while appropriate configurations for the 52

classification method may correspond to a continuous landscape. 53

It is now possible to employ vQEA on combined search spaces 54

with two types of representation. Each representation uses its 55

corresponding update operator to drive the probabilistic model 56

towards promising areas in the search space. In every generation 57

the models are sampled and then evaluated by a single fitness 58

measure. The fitness evaluation uses the sampled binary and 59

continuous solution part to determine the quality of the combined 60

solution. According to the fitness of the obtained solution the 61

models are updated. This extended vQEA allows us to enhance the 62

original QiSNN. 63

We emphasize that the extended vQEA is similar to a collabora- 64

tive coevolutionary algorithm (Potter & Jong, 2000). The evolution 65

of the two representations proceeds more or less independently 66

from each other. Both use their own solution representations and 67

update operators andmay explore their search spacewith different 68

learning rates. Despite their independent evolution, both represen- 69

tations share a single fitness function. The binary and continuous 70

sub-solutions are the components of a combined solution, and both 71

parts need to collaborate in order to maximize their fitness. 72

4. Experiments 73

We study the enhanced version of QiSNN on two benchmark 74

problems. The first benchmark is referred to as the two-spiral- 75

problem, on which the original QiSNN was investigated before, 76

cf. Schliebs et al. (2009). This problem is composed of two- 77

dimensional data forming two intertwined spirals and was firstly 78

introduced in Lang and Witbrock (1988). It requires learning of 79

a highly non-linear separation of the input space. The data was 80

frequently used as a benchmark for neural networks, including the 81

analysis of the eSNN method itself (Schliebs et al., 2009; Wysoski, 82

2008). Since the data contains only two relevant dimensions it 83

was extended by adding redundant and random information. 84

The importance of the redundant features was varied: Features 85

range from mere copies of the original two spirals to completely 86

random ones. The inherent information of a feature decreases 87

when stronger noise is applied. A detailed description of the data 88

Please cite this article in press as: Schliebs, S., et al. Integrated feature and parameter optimization for an evolving spiking neural network: Exploring heterogeneous
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generation can be found in Schliebs et al. (2009). The dataset1

contains seven redundant two-dimensional spiral points x′i, y
′

i ,2

for each point a different noise strength is used, totalling in 143

redundant features.
∧
An additional four random features r1, . . . , r44

were included. Together with the two relevant features of the5

spirals (x and y) the dataset contained 20 features in 400 samples.6

The second benchmark is the uniform hypercube dataset, to our7

best knowledge firstly introduced in Estevez, Tesmer, Perez, and8

Zurada (2009). The problem consists of two classes of 400 samples.9

For each sample a five-dimensional vector (r1, . . . , r5) is drawn10

from a uniform distribution. A given pattern belongs to class 1 if11

ri < γ i−1 ∗ α for i = 1, . . . , 5 and to class 2 otherwise. The12

parameters were chosen to be γ = 0.8 and α = 0.5. The entire13

dataset consists of 40 features, five relevant, 30 random and five14

redundant ones. The latter are linear combinations of the relevant15

features perturbated by additive Gaussian noise of increasing level.16

The dataset was balanced. A more detailed explanation of the data17

generation can be found in Estevez et al. (2009).18

4.1. Setup19

For the combined
∧
optimization method we chose a population20

structure of ten individuals organized in a single group, which is21

globally synchronized every generation. This setting was reported22

to be generally superior for a number of different benchmark23

problems (Defoin-Platel et al., in press). In the case of the spiral24

dataset the learning rate for the binary rotation gate was set to25

θ = π/50. For the rate of the mean and standard deviation shift26

we chose θµ = 0.1 and θσ = 0.1 respectively. The algorithm was27

allowed to evolve over a total number of 400 generations. Due to28

its larger problem size 1000 generations were computed for the29

hypercube problem, using once more θ = π/50 for the binary30

learning rate and θµ = 0.1 and θσ = 0.05 for the continuous31

update operator.32

In order to allow a fair comparison between the classification33

methods used in this study, one has to decide for an appropriate34

parameter configurations for each classifier. In contrast to the35

other classifiers, NBC does not require the tuning of any36

parameters. To setup theMLPwehave experimented on a subset of37

the datasets containing the relevant features only. By changing the38

number of hidden neurons, the learning rate, and the momentum39

term a satisfying configuration, in terms of classification accuracy,40

was experimentally obtained by systematic trial and error. The41

results of the parameter study for the MLP on the spiral dataset42

are presented in Fig. 4. The finally chosen setting is based on a43

tradeoff between computational cost and classification accuracy.44

The additional cost of more hidden neurons is not worth the45

slight increase of accuracy reported in Fig. 4. Using 10-fold cross-46

validation the chosen configuration of MLP achieved a satisfying47

accuracy of 0.849 (standard deviation 0.0634) on the spiral dataset48

containing the two relevant features only. When applied to the full49

dataset using all 20 features, the same configuration resulted in50

an accuracy of 0.611 (0.0608). Thus, appropriate feature selection51

does improve the performance of MLP, which is the key principle52

exploited in the wrapper approach. Finding an appropriate setting53

for the spiral problem appeared to be more difficult, in contrast54

to the other benchmark. For the latter problem changes in the55

configuration did not seem to impact the performance of the56

classifier too much. Thus we decided to use the same parameter57

setting for both problems. The common error back-propagation58

learning algorithm was used to train the network, connection59

weights were initialized with small uniform random numbers in60

the range [−0.25, 0.25].61

Most of the parameters of QiSNN are optimized during the62

evolutionary process. For each class l ∈ L three parameters63

exist: The modulation factor ml, the similarity threshold sl, and64

Fig. 4. The figure shows the accuracy levels achieved by 32 different configurations
of a multi-layer perceptron on the two-spiral dataset. Each point represents
the average of the accuracies obtained in a 10-fold cross-validation experiment,
error bars indicate the standard deviation. All configurations use neurons with
sigmoid transfer functions, trained in 500 epochs. The lower curve (green triangles)
represents the accuracy of theMLPwhen all 20 features are included in the dataset,
the upper curve (black squares) the accuracy when only the relevant features are
used. The circles (red) indicate the finally chosen configuration for the experiments
performed in this study, which is a satisfying compromise between computational
cost and classification quality.

the proportion factor cl. Since both problems contain two classes, 65

six parameters are involved in the QiSNN framework used here. 66

In terms of the population encoding we found
∧
especially that the 67

number of receptive fields needs careful consideration, since it 68

affects the resolution for distinguishing between different input 69

variables. After some preliminary experiments we decided for 20 70

receptive fields in case of the spiral data and five receptive fields for 71

the hypercube. The Gaussian centers were uniformly distributed 72

over the search interval
∧
and the variance was set to β = 1.5. 73

In order to guarantee statistical relevance, 30 independent runs 74

for each investigated classification method were performed. In 75

every generation all samples of the datasetwere randomly shuffled 76

and divided into training and testing samples, according to a 77

ratio of 0.75. For the computation of the classification error we 78

determined the ratio between correctly classified samples and the 79

total number of testing samples. 80

4.2. Results 81

We discuss the results on the two-spiral problem first, cf. 82

Fig. 5. Fig. 5(a)–(d) present the evolution of the average best 83

feature subset in every generation using the enhanced and original 84

QiSNN, MLP and NBC respectively. The color of a point in these 85

diagrams reflects how often a specific feature was selected at 86

a certain generation: The lighter the color the more often the 87

corresponding feature was selected. It can clearly be seen that 88

independent of the used algorithm a large number of features has 89

been discarded during the evolutionary process. Furthermore all 90

algorithms clearly identify the features x and y to be relevant. 91

All methods except the enhanced QiSNN select some redundant 92

and/or irrelevant features, too. 93

Particularly interesting is the order in which the features have 94

been discarded by each algorithm. Both QiSNN (Fig. 5(a) and 95

(d)) rejected the four random features r1, . . . , r4 containing no 96

information almost immediately in less than 20 generations. The 97

redundant features x′i , y
′

i were then rejected one after the other, 98

according to the strength of the inherent noise: The higher the 99

noise, the earlier a feature is identified as irrelevant. We note the 100

improved performance of the enhanced QiSNN, which is clearly 101

able to reject all redundant features in most of the runs. Fig. 5(e) 102

compares the evolution of the number of selected features during 103
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(a) Enhanced QiSNN. (b) MLP. (c) NBC.

(d) Original QiSNN. (e) Evolution of feather number. (f) Evolution of accuracy.

(g) Enhanced QiSNN. (h) MLP. (i) NBC.

(j) Parameter evolution for the enhanced QiSNN. (k) Parameter evolution for the original QiSNN.

Fig. 5. Results on the two-spiral dataset (see the text for explanation).

each generation. While both QiSNN based methods clearly select1

less features than their classical competitors at any stage of the2

∧
optimization, the original QiSNN is outperformed by the proposed3

enhanced version.4

It is also interesting to compare the evolution of the classifica- 5

tion error for each algorithm, cf. Fig. 5(f). The gradient in the fitness 6

landscape defined by eSNN appears to be much steeper compared 7

to all other algorithms, ranging from completely unfit solutions at 8

Please cite this article in press as: Schliebs, S., et al. Integrated feature and parameter optimization for an evolving spiking neural network: Exploring heterogeneous
probabilistic models. Neural Networks (2009), doi:10.1016/j.neunet.2009.06.038
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(a) Enhanced QiSNN. (b) Evolution of feature number.

Fig. 6. Results on the hypercube dataset (see the text for explanation).

the beginning of the evolutionary run, towards high quality solu-1

tions in later generations. MLP and NBC display a more flat fitness2

evolution. We believe that fitness gradient is partially responsi-3

ble for turning eSNN in a very good quality measure for feature4

subsets.5

According to the presented results on the QiSNN, a strong6

correlation between classification accuracy and feature number7

appears advantageous in the context of a feature selection task.8

Fig. 5(g)–(i) present this dependence for the investigated induction9

methods. Each point in the diagram corresponds to a tuple10

(accuracy, feature number) obtained from the generational best11

individual of every generation. The color indicates the generation12

itself, the lighter the color the later the generation in which a13

given tuple was obtained. In the case of QiSNN (cf. Fig. 5(g)) a14

strong relationship between feature number and accuracy can15

be observed.1 Even for small decreases of the feature number16

significant accuracy improvements are reported. The strong17

correlation between feature number and classification accuracy18

introduces a gradient and partially reduces neutrality in the fitness19

landscape. Removing a redundant or irrelevant feature from the20

selected subset corresponds to a fitness gain for QiSNN, whichmay21

not necessarily be true for the other two tested methods. If the22

feature removal does not lead to a certain fitness gain and thus two23

solutions may have the same fitness value, the fitness landscape24

has a neutral dimension at the corresponding parameter. Due to25

genetic drift the neutral parameter will converge randomly, which26

means a random selection or non-selection of the encoded feature.27

In the fitness landscape defined by eSNN neutral dimensions are28

replaced by a fitness gradient, which allows the identification29

and exclusion of low quality features from the current subset.30

As a result the fitness landscape can be easily climbed by the31

∧
optimization algorithm, leading to faster and more consistent32

convergence towards the optimal feature subset.33

Fig. 5(j) and (k) present the evolution of the eSNN parameters34

for the two versions of QiSNN. Although both methods have35

evolved similar final parameter configurations, the continuous36

exploration is much smoother compared to the binary one and37

allowed a finer parameter tuning. Due to the balanced nature of38

the dataset the parameter setting for the two classes have evolved39

to be approximately identical, i.e. c1 ≈ c2,m1 ≈ m2 and s1 ≈ s2.40

A similar analysis was done for the second benchmark dataset.41

We want to note
∧
that this dataset was very easy to solve by42

any of the tested algorithms. Even without feature selection MLP43

and NBC reported a very high classification accuracy. Nevertheless44

1 Both versions of QiSNN show a similar behavior here, thus we have chosen to
present the enhanced QiSNN as a representative of the two.

we have decided to present these results here, since they show 45

the proper functioning of all tested methods on an additional 46

independent benchmark problem. Fig. 6 summarizes the results on 47

the hypercube problem. In Fig. 6(a) the evolution of the average 48

selected feature subset is shown. We have included the diagram 49

for the enhanced QiSNN only, since the other methods report 50

very similar results. Thus QiSNN was chosen as a representative 51

of all tested algorithms. Similar to the figures presented on 52

the spiral data above, different gray levels reflect how often 53

a specific feature was selected at a certain generation. In this 54

diagram the first five features correspond to the relevant features, 55

followed by 30 irrelevant and finally five redundant features. 56

All methods clearly identify the five relevant variables. QiSNN 57

was capable of decreasing the feature number faster than NBC 58

and MLP, cf. Fig. 6(b). NBC reports optimal classification accuracy 59

without removing all irrelevant and redundant features. Without 60

the presence of any selective pressure some features converge 61

randomly due to genetic drift, which has resulted in the selection 62

of some irrelevant features in case of NBC. 63

We also want to discuss the computational complexity for each 64

of the presented algorithmshere. The fitness evaluation of a feature 65

subset is clearly the most costly part in the wrapper. Depending 66

on the dataset an MLP requires the construction of a rather large 67

neural network, followed by the training of each data sample for 68

500 epochs using a costly back-propagation procedure and is thus 69

by far the most complex method in this study. The eSNN classifier 70

implements a fast one-pass learning, but additional overhead is 71

required for transforming each data sample into a spike sequence 72

and computing the spike propagation in the network. Due to the 73

simple topology of the network an efficient spike simulation is 74

possible. The NBC requires the lowest computational resources, 75

each training sample is investigated only once and only minimal 76

overhead is necessary, allowing very fast classification. 77

5. Ecological modeling revisited 78

In Schliebs et al. (in press) the original QiSNN framework 79

was applied on an ecological modeling problem. Because of the 80

promising results obtained from the benchmark studies before, 81

we wanted to revisit the ecological data using the enhanced 82

QiSNN for feature selection. For many invertebrate species, little 83

is known about their response to environmental variables over 84

large spatial scales. That knowledge is important in order to predict 85

the establishment of a species, that has the potential to cause 86

great environmental harm. The usual approach to determine the 87

importance of a range of environmental variables, that explain the 88

global distribution of a species, is to train or fit amodel to its known 89

distribution using environmental parameters measured in areas 90

where the species is present and where it is absent. In this study,
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Fig. 7. Results on the ecological data set averaged over 30 independent runs. The lighter the color of a point in the diagram, the more often a specific feature was selected
at the given generation.

meteorological data that comprised 68 monthly and seasonal1

temperature, rainfall and soil moisture variables for 206 global2

geographic sites were compiled from published records (CABI,3

2003). These variables were correlated to global locations where4

the Mediterranean fruit-fly (Ceratitis capitata), a serious invasive5

species and fruit pest, were recorded at the time of the study,6

as either present or absent. The dataset is balanced having equal7

number of samples for each of the two classes. Previous use of MLP8

on the data results in a classification accuracy of approximately9

71% (Watts & Worner, 2006).10

The experimental setup defined in Schliebs et al. (in press) was11

keptmostly unchanged here to allow some comparison to previous12

results: Ten individuals are allowed to evolve in 4000 generations,13

statistical relevance is guaranteed by performing 30 independent14

runs and averaging the results. The additional parameters for the15

mean and standard deviation shift were set to θµ = 0.1 and16

θσ = 0.01 respectively, the learning rate of the binary model was17

θ = π/100.18

Fig. 7 presents the results of the revisited experiment. Similar19

to the figures before the evolution of the average best feature20

subset is shown, where the color reflects how often a specific21

feature was selected at a certain generation. The comparison22

between NBC and the original QiSNN was discussed in great23

detail in Schliebs et al. (in press), thus we will concentrate on24

the discussion of the performance of the two QiSNN only. Fig. 825

clearly shows the similarity of the feature subsets obtained by26

both QiSNN. Nevertheless the enhanced version reports greater27

consistency in the feature rejection. Also the enhanced QiSNN28

selected significantly less features than the original QiSNN, cf.29

Fig. 8: On average 14 features were selected using QiSNN, 9 in case30

of the enhanced QiSNN and 18 using NBC. Compared to the original31

QiSNN the enhanced version additionally rejected the following32

features: temp1, temp3, TAut2, TSpr1, Tannual, rain10, RSumR2,33

PEAnnual. The overall classification accuracy was similar between34

all tested algorithms.35

From an ecological point of view the evolved feature subsets36

are coherent with the current knowledge in this area. Winter37

temperatures, autumn rainfall and the degree-days (DD5 and38

DD15) were particularly strong features. Degree-days are the39

accumulated number of degrees of temperature above a threshold40

Fig. 8. In all algorithms the number of features decreases with increasing
generations, the enhanced QiSNN being noticeably faster than the original QiSNN
and NBC. All classifiers report a similar accuracy after the evolution of 4000
generations.

temperature (5◦ and 15◦ in this case) over time (in this dataset over 41

the whole year). It would be expected that the latter two variables 42

would be closely correlated. These results correspond to other 43

analysis wheremore conventional statistical andmachine learning 44

methods were used to identify the contribution of environmental 45

variables to C. capitata presence or absence (Worner, Leday, & 46

Ikeda, 2008). While there is no indication from this analysis 47

whether the features have a negative or positive effect on the 48

distribution of the species, it is known that C. capitata is limited 49

by the severity of temperatures in the winter and extremes of wet 50

or dry conditions in the summer and autumn (Vera, Rodriguez, 51

Segura, Cladera, & Sutherst, 2002). 52

6. Conclusions and future directions 53

In this studywe have presented an enhanced QiSNN framework 54

by proposing an extension for the used
∧
optimization method. The 55

∧
optimizer simultaneously evolves a feature subset along with an 56

parameter configuration for a spiking network by using two sep- 57

arate probabilistic representations: A binary representation for
∧

58

optimizing the feature search space and a continuous one for ex- 59

ploring the parameter space. We have pointed out the similarity to 60

coevolutionary algorithms. The enhanced QiSNN was studied on 61
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two benchmark datasets and an ecological data modeling problem1

was revisited. Results have been compared to the traditional NBC,2

an MLP and also to the original version of QiSNN. The enhanced3

QiSNNwas shown to be faster,more consistent and reliable than its4

predecessor. It also compared well to the classical methods tested5

here. Further development of theQiSNN is plannedwhere the pres-6

ence/absence of spikes at a given time in a QiSNN will also be rep-7

resented stochastically as suggested in Kasabov (2008a, 2008b).8
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